Improved inference of mutation rates: II. Generalization of the Luria-Delbrück distribution for realistic cell-cycle time distributions.

نویسندگان

  • M Oprea
  • T B Kepler
چکیده

In the first paper of this series (Kepler and Oprea, Theor. Popul. Biol. 2001) we found a continuum approximation of the Luria-Delbrück distribution in terms of a scaled variable related to the proportion of mutants in the culture. Here we show that the Luria-Delbrück distribution is inaccurate when realistic division processes are being considered due to the non-Markovian character of the cell cycle. We derive the expectation of the proportion of mutants in the culture for arbitrary cell-cycle time distributions. We then introduce a two-parameter generalization of the continuum Luria-Delbrück distribution for two of the more commonly used cell-cycle time distributions: gamma and shifted exponential. We obtain the generalized distribution by defining a map from the actual parameters to "effective" parameters. The effective mutation rate is obtained analytically, while the effective population size is obtained by fitting simulation data. Our simulations show that the second parameter depend mostly on the coefficient of variation of the cell-cycle time distribution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved inference of mutation rates: I. An integral representation for the Luria-Delbrück distribution.

The estimation of mutation rates is ordinarily performed using results based on the Luria-Delbrück distribution. There are certain difficulties associated with the use of this distribution in practice, some of which we address in this paper (others in the companion paper, Oprea and Kepler, Theor. Popul. Biol., 2001). The distribution is difficult to compute exactly, especially for large values ...

متن کامل

Fluctuation Analysis: Can Estimates Be Trusted?

The estimation of mutation rates and relative fitnesses in fluctuation analysis is based on the unrealistic hypothesis that the single-cell times to division are exponentially distributed. Using the classical Luria-Delbrück distribution outside its modelling hypotheses induces an important bias on the estimation of the relative fitness. The model is extended here to any division time distributi...

متن کامل

Salvador Luria and Max Delbrück on Random Mutation and Fluctuation Tests.

Do mutations arise randomly over time?Or are they induced by unfavorable environments? By addressing these crucial evolutionary questions, Salvador Luria andMaxDelbrückwon a Nobel Prize and helped to start the field of bacterial genetics. In 1943, it had long been known that bacterial cultures rapidly develop resistance to viral infection. Some biologists argued that viruses directly induced re...

متن کامل

General formulation of Luria-Delbrück distribution of the number of mutants.

The Luria-Delbrück experiment is a cornerstone of evolutionary theory, demonstrating the randomness of mutations before selection. The distribution of the number of mutants in this experiment has been the subject of intense investigation during the past 70 years. Despite this considerable effort, most of the results have been obtained under the assumption of constant growth rate, which is far f...

متن کامل

Mean field mutation dynamics and the continuous Luria-Delbrück distribution.

The Luria-Delbrück mutation model has a long history and has been mathematically formulated in several different ways. Here we tackle the problem in the case of a continuous distribution using some mathematical tools from nonlinear statistical physics. Starting from the classical formulations we derive the corresponding differential models and show that under a suitable mean field scaling they ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theoretical population biology

دوره 59 1  شماره 

صفحات  -

تاریخ انتشار 2001